IT Learning

実践形式でITのお勉強

Statistics

Deriving Regression coefficient from Residual Sum of Squares

投稿日:

When Linear Regression equation, \(y=\hat{\alpha} + \hat{\beta} x\), is found from the data, the formula for their coefficients, \(\hat{\alpha}\) and \(\hat{\beta}\), are the followings.

$$ \hat{\beta} = r_{xy}\frac{s_{y}}{s_{x}} $$

$$ \hat{\alpha} = \bar{y} – \hat{\beta}\bar{x_i} $$

\(r_{xy} \): correlation coefficient

\(s_{x} \): standard deviation of \(x\), \(s_{y} \): standard deviation of \(y\)

Here we will explain how to derive these equation from the residual sum of squares.

Table of Contents

Derivation

We will use the following residual sum of regression below.

$$ S(\hat{\alpha}, \hat{\beta}) = \sum^{n}_{i=1}(y_i – \hat{y})^2 = \sum^{n}_{i=1}(y_i – (\hat{\alpha} + \hat{\beta} x_i ))^2 $$

To find \(\hat{\alpha}\) and \(\hat{\beta}\) to minimize \(S(\hat{\alpha}, \hat{\beta})\), we will differentiate partially with \(\hat{\alpha}, \hat{\beta}\).

$$ \frac{\partial S}{\partial \hat{\alpha}} = 2\times(-1)\times\sum^{n}_{i=1}(y_i – \hat{\alpha} – \hat{\beta} x_i ) =0 \\ \sum^{n}_{i=1}y_i = \sum^{n}_{i=1}\hat{\alpha} + \sum^{n}_{i=1}\hat{\beta}x_i \\ = n\hat{\alpha} + \hat{\beta}\sum^{n}_{i=1}x_i$$

Dividing both side by \(n\)

$$ \frac{\sum^{n}_{i=1}y_i}{n} = \hat{\alpha} + \frac{\sum^{n}_{i=1}x_i}{n} \ \bar{y} = \hat{\alpha} + \hat{\beta}\bar{x} \\ \hat{\alpha} = \bar{y} – \hat{\beta}\bar{x}$$

we can get \(\hat{\alpha}\).

Now to get \(\hat{\beta}\), we will differentiate \(S\) partially by \(\hat{\beta}\).

$$ \frac{\partial S}{\partial \hat{\beta}} = 2\times(-1)\times\sum^{n}_{i=1}(y_i – \hat{\alpha} – \hat{\beta} x_i ) x_i =0 \\ \sum^{n}_{i=1}x_i y_i = \sum^{n}_{i=1}\hat{\alpha} x_i + \sum^{n}_{i=1}\hat{\beta} x_i^2 \ \sum^{n}_{i=1}x_i y_i= \hat{\alpha}\sum^{n}_{i=1}x_i + \hat{\beta}\sum^{n}_{i=1}x_i^2$$

Dividing both sides by \(n\)

$$ \frac{\sum^{n}_{i=1}x_iy_i}{n} = \hat{\alpha}\frac{\sum^{n}_{i=1}x_i}{n} + \hat{\beta}{\frac{\sum^{n}_{i=1}x_i^2}{n}} \\ \frac{\sum^{n}_{i=1}x_iy_i}{n} = \hat{\alpha}\bar{x} + \hat{\beta}{\frac{\sum^{n}_{i=1}x_i^2}{n}} $$

Here we can use \(\hat{\alpha} = \bar{y} – \hat{\beta}\bar{x}\) that we already got.

$$ \frac{\sum^{n}_{i=1}x_iy_i}{n} = \bar{x}\bar{y} – \hat{\beta}\bar{x}^2 + \hat{\beta}{\frac{\sum^{n}_{i=1}x_i^2}{n}} \\ = \bar{x}\bar{y} + \hat{\beta}(\frac{\sum^{n}_{i=1}x_i^2}{n}-\bar{x}^2)$$

\( \frac{\sum^{n}_{i=1}x_i^2}{n}-\bar{x}^2\) is variance of \(x\) then we define it as \(s_{xx}\).

$$\frac{\sum^{n}_{i=1}x_iy_i}{n} = \bar{x}\bar{y} + \hat{\beta}s_{xx} \\ \frac{\sum^{n}_{i=1}x_iy_i }{n}- \bar{x}\bar{y} = \hat{\beta}s_{xx}$$

Here we can change \(\frac{\sum^{n}_{i=1}x_iy_i}{n} – \bar{x}\bar{y}\) to the following.

$$ \frac{\sum^{n}_{i=1}x_iy_i}{n} + \bar{x}\bar{y} – 2\bar{x}\bar{y} \\ = \frac{\sum^{n}_{i=1}x_iy_i}{n} + \frac{\sum^{n}_{i=1}\bar{x}\bar{y}}{n} – \frac{\sum^{n}_{i=1}x_i}{n}\bar{y} – \frac{\sum^{n}_{i=1}y_i}{n}\bar{x} = \frac{\sum^{n}_{i=1}(x_iy_i – x_i\bar{y} – \bar{x}y_i + \bar{x}\bar{y})}{n}$$

\(\frac{\sum^{n}_{i=1}x_iy_i}{n}- \bar{x}\bar{y}\) is covariance of \(x, y\) then we define it as \(s_{xy}\).

$$s_{xy} = \hat{\beta}s_{xx} \\ \hat{\beta} = \frac{s_{xy}}{s_{xx}} = \frac{s_{xy}}{s_xs_y}\cdot \frac{s_y}{s_x} $$

We express correlation coefficient as \(r_{xy} = \frac{s_{xy}}{s_{x}s_{y}}\)

$$ \hat{\beta} = r_{xy}\frac{s_y}{s_x}$$

Finally we can get \(\hat{\alpha}\) and \(\hat{\beta}\).

$$ \hat{\beta} = r_{xy}\frac{s_{y}}{s_{x}} $$

$$ \hat{\alpha} = \bar{y} – \hat{\beta}\bar{x_i} $$

Related

-Statistics

執筆者:


comment

Your email address will not be published. Required fields are marked *